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Balanced rearrangements involving the KMT2A gene, located at
11q23, are among the most frequent chromosome aberrations in
acute myeloid leukemia (AML). Because of numerous fusion part-
ners, the mutational landscape and prognostic impact of specific
11q23/KMT2A rearrangements are not fully understood. We ana-
lyzed clinical features of 172 adults with AML and recurrent 11q23/
KMT2A rearrangements, 141 of whom had outcome data avail-
able. We compared outcomes of these patients with outcomes
of 1,097 patients without an 11q23/KMT2A rearrangement cate-
gorized according to the 2017 European LeukemiaNet (ELN) classi-
fication. Using targeted next-generation sequencing, we investigated
the mutational status of 81 leukemia/cancer-associated genes in 96
patients with 11q23/KMT2A rearrangements with material for molec-
ular studies available. Patients with 11q23/KMT2A rearrangements
had a low number of additional gene mutations (median, 1; range
0 to 6), which involved the RAS pathway (KRAS, NRAS, and PTPN11)
in 32% of patients. KRAS mutations occurred more often in patients
with t(6;11)(q27;q23)/KMT2A-AFDN compared with patients with the
other 11q23/KMT2A subsets. Specific gene mutations were too infre-
quent in patients with specific 11q23/KMT2A rearrangements to as-
sess their associations with outcomes. We demonstrate that younger
(age <60 y) patients with t(9;11)(p22;q23)/KMT2A-MLLT3 had better
outcomes than patients with other 11q23/KMT2A rearrangements
and those without 11q23/KMT2A rearrangements classified in the
2017 ELN intermediate-risk group. Conversely, outcomes of older
patients (age ≥60 y) with t(9;11)(p22;q23) were poor and compara-
ble to those of the ELN adverse-risk group patients. Our study
shows that patients with an 11q23/KMT2A rearrangement have dis-
tinct mutational patterns and outcomes depending on the fusion
partner.
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In acute myeloid leukemia (AML), recurring cytogenetic ab-
normalities are frequently present, provide important prognostic

information, and guide therapeutic decisions (1–5). Recurrent,
balanced rearrangements involving the lysine methyltransferase 2a
(KMT2A) gene (also known as the MLL gene), which is located at
11q23 and encodes a histone H3 lysine 4 methyltransferase, occur
in ∼3% to 7% of adult patients with de novo AML (3–13). Bal-
anced chromosome rearrangements involving 11q23 and KMT2A
are very heterogeneous, with at least 77 different 11q23/KMT2A
fusion partners reported in AML patients (6). Most of the rear-
rangements result in fusion proteins, which can deregulate the
transcriptional program of cells, lead to specific gene expression

patterns that include high expression of HOXA genes and thereby
contribute to leukemogenesis (14–16).
Among the recurrent 11q23/KMT2A rearrangements in AML,

the most common is t(9;11)(p22;q23) [hereinafter referred to as
t(9;11)], which results in a fusion of KMT2A with the MLLT3
gene (previously known as AF9). AML with this translocation is
recognized as a specific disease entity in the 2016 revision of the
World Health Organization (WHO) classification of myeloid
neoplasms and acute leukemia (17). Other translocations com-
mon in AML include t(6;11)(q27;q23) [t(6;11) hereinafter] resulting
in a fusion with AFDN (previously known as MLLT4 and AF6);
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t(11;19)(q23;p13.1), resulting in a fusion with ELL; and
t(11;19)(q23;p13.3), resulting in a fusion with MLLT1 (also termed
ENL) (3, 4, 6, 7, 10, 18).
Previous studies have suggested that patient prognosis is as-

sociated with the 11q23/KMT2A fusion partner. For example,
patients with t(9;11) had better outcomes compared with patients
with other 11q23/KMT2A rearrangements in several studies of both
adult (7, 9, 10) and pediatric AML (19), although some other studies
(12, 13) did not confirm these results. In addition, in a large series
of children with AML, t(1;11)(q21;q23) was associated with fa-
vorable clinical outcomes and t(6;11)(q27;q23), t(10;11)(p12;q23),
and t(10;11)(p11.2;q23) were associated with unfavorable clinical
outcomes independent of other prognostic factors (20). The 2017
European LeukemiaNet (ELN) risk stratification schema includes
AML patients with t(9;11) in the intermediate-risk group, whereas
patients with all other 11q23/KMT2A balanced rearrangements
[t(v;11)(v;q23) hereinafter] are included in the adverse-risk group,
regardless of age (1). Further evaluation of the clinical parameters
and outcomes of the AML patients with specific recurrent 11q23/
KMT2A rearrangements potentially may contribute to refining of
the current ELN classification.
Along with cytogenetics, gene mutations could potentially im-

prove risk stratification of AML patients (1, 2). Previous studies of
mutations in AML patients with specific balanced 11q23/KMT2A
rearrangements have reported a predominance of RAS mutations
in patients with 11q23/KMT2A rearrangements (21–23). Whether
the presence of additional gene mutations influences the clinical
outcomes of AML patients with 11q23/KMT2A rearrangements is
currently unclear.
To address this question, we analyzed pretreatment characteris-

tics, clinical outcomes and mutational data of 81 leukemia/cancer-
associated genes (24) in AML patients with well-defined 11q23/
KMT2A rearrangements, who were similarly treated on Cancer and
Leukemia Group B (CALGB)/Alliance for Clinical Trials in
Oncology (Alliance) protocols.

Results
Frequency and Pretreatment Characteristics of Patients with Specific
11q23/KMT2A Rearrangements. Among 172 patients with 11q23/
KMT2A rearrangements, the most frequent abnormality was
t(9;11)/KMT2A-MLLT3, detected in 75 patients (44%), followed by
t(6;11)/KMT2A-AFDN in 29 patients (17%), t(11;19)(q23;p13.1)/
KMT2A-ELL in 20 (12%), t/ins(10;11)(p13;q23)/KMT2A-MLLT10
in 14 (8%), t(11;19)(q23;p13.3)/KMT2A-MLLT1 in 11 (6%), and
t(11;17)(q23;q25)/KMT2A-SEPTIN9 in 5 (3%). An additional 18
patients had less common translocations, each of which occurred in
only one or two patients. Detailed cytogenetic data of these pa-
tients, who constitute a subset referred to hereafter as the “other
11q23/KMT2A translocations,” are provided in SI Appendix, Table
S1. In addition, details of secondary chromosome abnormalities
detected in patients with the most frequently recurring 11q23/
KMT2A rearrangements are provided in SI Appendix, Table S2.
The pretreatment characteristics of AML patients with 11q23/

KMT2A rearrangements are shown in SI Appendix, Table S3. The
median age of the entire patient cohort was 43 y (range, 17–84
y), and 80% of the patients were younger than 60 y at diagnosis.
The age distribution among patient groups with specific 11q23/
KMT2A rearrangements did not differ significantly (P = 0.65).
There were differences in the percentages of blood (P = 0.001)
and bone marrow (BM) (P < 0.001) blasts among patient groups
with different 11q23/KMT2A rearrangements. Patients with
t(11;19)(q23;p13.1) had the lowest blast percentages in BM
(median, 55%) and blood (median, 11%), whereas patients with
t/ins(10;11) had the highest blast percentages in BM (median,
89%) and blood (median, 77%) (SI Appendix, Table S3).

Mutational Landscape of AML Patients with 11q23/KMT2A Rearrangements.
Ninety-six patients had material available for molecular analysis

using our targeted sequencing panel. We identified 134 gene mu-
tations in these 96 patients (median, 1 mutation per patient; range,
0 to 6). In line with previous reports (21–23), the most frequently
mutated genes were KRAS (in 14 of 96 patients; 15%) and NRAS
(in 13 patients; 14%). Mutations in KRAS and NRAS were mu-
tually exclusive in our cohort, as were PTPN11 mutations, found in
four patients (4%) (Fig. 1). Altogether, mutations in the genes
composing the RAS pathway (KRAS, NRAS, and PTPN11) were
detected in 32% of patients with 11q23/KMT2A rearrangements.
Beside RAS pathway mutations, only tyrosine kinase domain
mutations in the FLT3 gene (FLT3-TKD; 8%) and mutations in
the RUNX1 (7%), TET2 (7%), PLCG2 (5%), and ZRSR2 (5%)
genes were found with a frequency of at least 5%. Other recurrent
gene mutations that are relatively common in AML patients
without 11q23/KMT2A rearrangements, such as internal tandem
duplications of the FLT3 gene (FLT3-ITD), mutations in the
DNMT3A andNPM1 genes, and biallelic mutations of CEBPA (1),
were infrequent in patients with 11q23/KMT2A rearrangements,
detected in 4%, 3%, 1%, and 1% of the patients, respectively.
We next compared patient subsets with different 11q23/KMT2A

rearrangements to identify molecular similarities and differences.
The distribution of mutations in these subsets is shown in Fig. 1,
and these mutations are listed in SI Appendix, Table S4. All an-
alyzed patient subsets had a low number of mutations in common.
Whereas each patient with a t/ins(10;11) or t(11;17) had at least
one mutation, 36% of patients with t(9;11), 20% of those with
t(6;11), and 20% of those with other 11q23/KMT2A translocations
did not harbor mutations in any of the genes that we sequenced
(Fig. 1).
As mentioned above, the most frequently mutated genes were

KRAS and NRAS, and they were mutated in at least one patient
in each of the 11q23/KMT2A subsets. The distribution of NRAS
mutations was not significantly different among the subsets (P =
0.67). On the other hand, KRAS mutations occurred with a sig-
nificantly higher frequency in patients with t(6;11) compared
with patients with all other 11q23/KMT2A rearrangements
combined (47% vs. 9%; P = 0.001).

Variant Allele Fractions of Detected Mutations and the Proportion of
Cells with the 11q23/KMT2A Rearrangement. Next, we determined
variant allele fractions (VAFs) for the 18 most frequent gene
mutations assessed using targeted amplicon sequencing (Fig. 2).
Similar to previous studies (21, 25), here the detected gene
mutations had a broad range of VAFs. Higher VAFs were found
for mutations in such genes as ZRSR2, PLCG2, GATA2, TET2,
ASXL1, and DNMT3A, the last three of which are known to be
recurrently mutated in age-associated clonal hematopoiesis of
indeterminate potential (26, 27). On the other hand, mutations
in the KRAS, NRAS, PTPN11, and RUNX1 genes or the FLT3-
TKD had lower VAFs, indicating that these mutations may be
subclonal and likely occurred later in leukemogenesis. In con-
trast, when we analyzed the percentages of metaphase cells con-
taining the rearrangements involving 11q23/KMT2A in G-banded
preparations, we found that in a vast majority of the patients (165
of 172; 96%), these rearrangements were found in >50% of the
analyzed metaphase cells (median, 100%; range, 17 to 100%).
Likewise, in the 34 patients for whom interphase fluorescence
in situ hybridization data were available, 31 (91%) harbored
rearrangements of the KMT2A gene in >50% of the analyzed
nuclei (median, 86.5%; range, 10 to 100%). These data suggest
that the 11q23/KMT2A rearrangement is an important and pos-
sibly early event in leukemogenesis.

Treatment Outcomes of Patients with 11q23/KMT2A Rearrangements.
Among 108 younger adult patients (age <60 y) for whom outcome
data were available, those with different 11q23/KMT2A rear-
rangements had varying complete remission (CR) rates, with the
lowest CR rate of 42% in patients with t(11;19)(q23;p13.1), a 57%
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rate in patients with t(6;11), and the highest rates, 77% and 80%,
in patients with t(9;11) and patients with other 11q23/KMT2A
translocations, respectively (Table 1). However, a high CR rate
translated into a relatively good outcome only for younger patients
with t(9;11), with a 3-y disease-free (DFS) rate of 47% and an
overall survival (OS) rate of 41%. Patients with t(6;11) had the
shortest survival, with no patients surviving 3 y disease-free and
only one patient (5%) alive at 3 y. The OS of patients in the
remaining 11q23/KMT2A groups was also rather poor, with 3-y OS
rates of 8% for patients with t(11;19)(q23;p13.1), 11% for those
with t(11;19)(q23;p13.3), 30% for those with other 11q23/KMT2A
translocations, and 33% for those with t/ins(10;11) (Table 1 and
Fig. 3). Consequently, because of the similarity in outcomes of
patients with 11q23/KMT2A rearrangements other than t(9;11), we
combined these patients into one group, denoted t(v;11)(v;q23). As
expected, patients with t(v;11)(v;q23) had a shorter DFS (3-y rate:
13% vs. 47%, P = 0.007) and OS (3-y rate: 16% vs. 41%, P = 0.004)
than patients with t(9;11) (SI Appendix, Table S5 and Fig. S1).
In addition, since several previous studies have shown that

mutational patterns can refine risk stratification of AML patients
(1, 2, 17, 25, 28), we assessed the impact of the presence of one
or more additional mutations vs. no mutation on the outcomes of
younger patients with t(9;11) and those with all remaining 11q23/
KMT2A rearrangements combined into a single group. As shown
in SI Appendix, Fig. S2 A and B, younger patients with t(9;11)
who harbored at least one additional mutation tended to have a
longer DFS (P = 0.07) than patients without any mutation in
addition to t(9;11); however, there was no significant difference
in OS between these patient groups. The mutations found in pa-
tients with t(9;11) were heterogeneous; among 15 different mu-
tations, only mutations in the NRAS gene were detected in three

patients, and FLT3-TKD and mutations in the PLCG2, PTPN11,
TET2, and ZRSR2 genes were detected in two patients each. In
contrast, the presence of additional mutations had no significant
impact on the DFS or OS of patients with t(v;11)(v;q23) (SI Ap-
pendix, Fig. S2 C and D). Notably, the numbers of patients in both
of the foregoing comparisons were small.
Among 33 older patients (age ≥60 y) in our cohort for whom

outcome data were available, 16 harbored t(9;11) and 17 had
other rearrangements involving 11q23/KMT2A. Because of rel-
atively small patient numbers, we were only able to compare
outcomes of patients with t(9;11) and all those with t(v;11)(v;q23)
combined. We found that the former tended to have better rates
of CR (75% vs. 41%; P = 0.08), but not of DFS (3-y rate, 0% vs.

Fig. 1. Oncoprint of mutations detected in 96 patients with AML harboring recurrent rearrangements involving 11q23/KMT2A. Each column represents one
patient, and each row represents a single gene. Red, mutated; dark gray, wild-type; light gray, mutation status not determined. The frequencies of these gene
mutations in patients with each recurrent 11q23/KMT2A rearrangement are provided in SI Appendix, Table S4. No mutation was detected in any of the
following genes analyzed: AKT1, ARAF, ATM, BCL2, BRAF, BRINP3, CBL, CCND1, CSNK1A1, CTNNB1, ETV6, FBXW7, GATA1, GSK3B, HNRNPK, IKZF3, IL7R, JAK2,
KIT, KLHL6, MAPK1, MED12, MYD88, NOTCH1, PHF6, PIK3CD, PLEKHG5, RAD21, SF3A1, SF3B1, SYK, U2AF2, XPO1, and ZMYM3.

Fig. 2. VAFs for the 18 genes most frequently mutated in patients with
AML and 11q23/KMT2A rearrangements.
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29%; P = 0.12) or OS (3-y rate, 6% vs. 12%; P = 0.92) (SI Ap-
pendix, Fig. S3).

Outcomes of Patients with de novo 11q23/KMT2A-Rearranged AML
with Respect to the 2017 ELN Classification. According to the 2017
ELN recommendations (1), patients with t(9;11) are classified in
the intermediate-risk group regardless of age or any accompanying
gene mutations, whereas patients with t(v;11)(v;q23) are included
in the adverse-risk group. We compared clinical outcomes of pa-
tients with t(9;11) and, separately, of those with t(v;11)(v;q23) with
outcomes of 1,097 similarly treated AML patients without 11q23/
KMT2A rearrangements who were classified into the 2017 ELN
favorable-, intermediate-, or adverse-risk groups (1).
We compared the baseline clinical characteristics and treatment

outcome of 44 younger patients with t(9;11) with those of 188
younger patients classified in the ELN intermediate-risk group
who did not have t(9;11). The former had lower white blood cell
counts (median, 11.9 × 109/L vs. 28.8 × 109/L; P = 0.01), a higher
percentage of BM blasts (median, 87% vs. 73%; P < 0.001), and
more frequent extramedullary involvement (43% vs. 23%; P =
0.01) than other patients in the ELN intermediate-risk group (SI
Appendix, Table S6). Concerning outcome, although CR rates did
not differ significantly (77% vs. 70%; P = 0.36), patients with
t(9;11) had longer DFS (3-y rate, 47% vs. 19%; P = 0.003; Fig. 4A)
and OS (3-y rate, 41% vs. 27%; P = 0.05) than non-t(9;11) ELN
intermediate-risk patients (Fig. 4B and SI Appendix, Table S7).
We then examined how the improved outcomes of 44 younger

patients with t(9;11) compared with the outcomes of younger
patients classified in the 2017 ELN favorable-risk group (n =
449). A comparison of pretreatment clinical characteristics showed
that patients with t(9;11) had lower white blood cell counts (me-
dian, 11.9 × 109/L vs. 25.0 × 109/L; P = 0.03), and higher per-
centages of BM blasts (median, 87% vs. 63%; P < 0.001) than
other patients in the 2017 ELN favorable-risk group (SI Appendix,
Table S8). With regard to outcome, we found that younger patients
with t(9;11) tended to have a lower CR rates than patients classi-
fied in the 2017 ELN favorable-risk group (77% vs. 88%; P = 0.06),
as well as a shorter OS (3-y rate, 41% vs. 61%; P = 0.03). DFS did
not differ significantly between the two groups (3-y rate, 47% vs.
52%; P = 0.83) (SI Appendix, Table S9 and Fig. S4).
Patients with t(v;11)(v;q23) are classified in the 2017 ELN

adverse-risk group. We compared pretreatment characteristics
and outcomes of 63 younger patients with t(v;11)(v;q23) with
those of 237 patients classified in the ELN adverse-risk group who
did not carry t(v;11)(v;q23). The former were younger (median
age, 38 y vs. 49 y; P < 0.001) and had higher percentages of BM
blasts (median, 78% vs. 65%; P < 0.001), higher hemoglobin levels

(median, 9.5 g/dL vs. 9.0 g/dL; P = 0.05), and a higher frequency of
extramedullary disease (34% vs. 19%; P = 0.02; SI Appendix,
Table S10). The CR rate of patients with t(v;11)(v;q23)/KMT2A-
rearranged AML was higher than that of the other ELN adverse-
risk patients (60% vs. 42%; P = 0.01). However, there were no
significant between-group differences in either DFS (3-y rate, 13%
vs. 10%; P = 0.91; Fig. 4C) or OS (3-y rate, 16% vs. 17%; P = 0.73;
Fig. 4D and SI Appendix, Table S11).

Table 1. Outcomes of younger adult patients (age <60 y) with AML and 11q23/KMT2A rearrangements

Rearrangements involving 11q23/KMT2A* CR, %

DFS OS

Median, y % Disease-free at 3 y (95% CI) Median, y % Alive at 3 y (95% CI)

t(9;11)(p22;q23) (n = 44) 77 1.0 47 (30–63) 1.4 41 (26–55)
t(6;11)(q27;q23) (n = 21) 57 0.7 0 0.6 5 (0–20)
t(11;19)(q23;p13.1) (n = 12) 42 0.5† ‒ 0.7 8 (1–31)
t(11;19)(q23;p13.3) (n = 9) 67 0.8‡ ‒ 0.8 11 (1–39)
t/ins (10;11)(p13;q23) (n = 9) 67 0.4§ ‒ 0.7 33 (8–62)
Other t(11q23) (n = 10) 80 1.0 13 (1–42) 1.7 30 (7–58)
All patients (n = 108) 68 0.8 29 (19–39) 0.9 26 (18–34)

CI, confidence interval.
*The group of patients with t(11;17) is not listed in the table because only three patients were available for outcome analyses. These patients are included in
the “all patients” group.
†The five patients who achieved CR had the following DFS: 0.3, 0.5, 0.5, 0.5, and 5.0+ (+ indicates that the patient has not died and DFS is determined using
last follow-up date) years.
‡The six patients who achieved CR had the following DFS: 0.2, 0.5, 0.8, 0.8, 0.9, and 11.1+ years.
§The six patients who achieved CR had the following DFS: 0.1, 0.2, 0.2, 0.6, 2.6 and 7.5+ years.

A

B

Fig. 3. Clinical outcomes of younger adult patients (age <60 y) with AML
harboring the most frequent recurring rearrangements involving 11q23/
KMT2A. (A) DFS. (B) OS.
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Since DFS and OS did not differ significantly between older
patients with t(9;11) and those with t(v;11)(v;q23), we compared
the outcomes of 16 older patients with t(9;11) with those of 223
older non–11q23/KMT2A-rearranged patients classified in the
2017 ELN adverse-risk group. As shown in SI Appendix, Table
S12, there was no statistically significant difference in either DFS
(3-y rate, 17% vs. 3%; P = 0.33) or OS (3-y rate, 6% vs. 4%; P =
0.56) between the older patients with t(9;11) and older patients
classified in the 2017 ELN adverse-risk group, even though the
former group had a higher CR rate (75% vs. 29%; P < 0.001).

Discussion
Our data on a relatively large cohort of AML patients with
t(9;11) and other recurrent balanced rearrangements involving
11q23/KMT2A reveal both similarities and differences among
AML patients with specific 11q23/KMT2A translocations. Trans-
location t(9;11) was the most common, followed by t(6;11) and
t(11;19)(q23;p13.1). This is consistent with previous studies, although
several of those studies combined patients with t(11;19)(q23;p13.1)
and patients with t(11;19)(q23;p13.3) into one subset, making as-
sessment of the incidence of each type of t(11;19) difficult (3, 8, 9).
Both the data presented here and in our previous report (29) em-
phasize the fact that t(11;19)(q23;p13.1) and t(11;19)(q23;p13.3)
represent two distinct rearrangements associated with unique clinical
and molecular features and thus should not be considered to rep-
resent a single rearrangement.
Two previous studies used next-generation sequencing to an-

alyze AML patients with several separate recurrent 11q23/KMT2A

rearrangements (21, 22). Grossmann et al. (22) examined the
mutational status of 15 genes in 85 patients representing five
different 11q23/KMT2A subsets and found a high incidence (∼50%)
of mutations in genes constituting the RAS signaling pathway:
NRAS, 22%; KRAS, 20%; PTPN11, 3%; and BRAF, 2.5%. Similar
results were reported by Lavallée et al. (21), who used a whole
transcriptome approach to investigate 31 patients belonging to five
different 11q23/KMT2A subgroups. Our analysis of the molecular
landscape of 96 de novo AML patients with 11q23/KMT2A rear-
rangements not only substantiates the high frequency of RAS
signaling pathway mutations (although we did not detect any
mutations in the BRAF gene), but also reveal an uneven distri-
bution of specific RAS mutations among the subgroups with dif-
ferent 11q23/KMT2A rearrangements. Whereas theNRASmutations
occurred with a similar frequency among these subgroups, we
observed—in contrast to the aforementioned studies (21, 22)—the
highest incidence of KRASmutations in patients with t(6;11), 47% of
whom carried this mutation, as opposed to only 9% of patients with
other 11q23/KMT2A rearrangements, including only 3% of patients
with t(9;11). Importantly, the VAFs of mutations in all RAS signaling
pathway genes were low, which is consistent with the literature data
indicating that RASmutations are likely subclonal and acquired after
the formation of other genetic abnormalities, such as the 11q23/
KMT2A rearrangements (21, 22). Indeed, our observation that in
most patients, 11q23/KMT2A rearrangements were found in either
all or the majority of metaphase cells analyzed supports the view that
acquisition of the 11q23/KMT2A rearrangement represents an early,
disease-initiating event during leukemogenesis (30). Nevertheless,

BA

C D

Fig. 4. Outcomes of younger adult patients (age <60 y) with AML. (A and B) DFS (A) and OS (B) of patients with t(9;11) vs. other patients classified in the 2017
ELN intermediate-risk group. (C and D) DFS (C) and OS (D) of patients with 11q23/KMT2A rearrangements other than t(9;11) [i.e., t(v;11)(v;q23)] vs. other
patients classified in the 2017 ELN adverse-risk group.
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even though the mutations in the RAS pathway genes and in the
FLT3 gene are subclonal and possibly acquired later, they can ac-
celerate the onset of leukemia and promote disease progression and
clonal expansion of KMT2A-MLLT3-positive cells, as demonstrated
by a recent study using a retroviral mouse AML model (31). Further
studies are needed to determine the exact roles played by other in-
frequent but recurring mutations that we identified in our cohort of
11q23/KMT2A-rearranged patients.
The prognostic impact of the 11q23/KMT2A rearrangements

in AML has been studied for >30 y, but these studies have
produced somewhat conflicting results (3–5, 7, 9–13, 18–20, 32,
33). Our initial report (7) demonstrating better outcomes in
adults with t(9;11) than in patients with 11q23/KMT2A-balanced
abnormalities involving other partner chromosomes was con-
firmed by a study from the German AML Intergroup in a large
cohort of younger patients (up to 60 y) that also included pa-
tients with secondary and therapy-related AML (10). Moreover,
Chen et al. (9) found improved outcomes of patients with t(9;11)
in a cohort comprising younger and older patients. However, our
present study demonstrates that the prognostic significance of
t(9;11) is dependent on patient age. The younger patients with
de novo AML and t(9;11) have had significantly better outcomes
than patients with all other 11q23/KMT2A rearrangements com-
bined. In contrast, the outcomes of older patients with t(9;11)
were very poor and similar to the outcomes of patients with
t(v;11)(v;q23), confirming our earlier observations (28).
In the current 2017 ELN classification, the presence of t(9;11)

is a criterion for classifying all patients with this translocation in
the intermediate-risk group, irrespective of patient age or the
potential coexistence of rare, concurrent adverse-risk gene mu-
tations (1). Our data show that AML patients age <60 y with
t(9;11) have significantly better DFS and OS than other AML
patients classified in the ELN intermediate-risk group. However,
even though the DFS of these younger patients with t(9;11) was
not significantly different from that of patients categorized in the
2017 ELN favorable-risk group, the OS of the former group was
shorter and CR rates tended to be lower than those of the latter
group. We note that we only analyzed patients with de novo AML,
which is important not only because the frequency of 11q23/
KMT2A rearrangements is increased in patients with therapy-
related AML, especially after treatment with topoisomerase II
inhibitors (34), but also because the clinical outcome of patients
with therapy-related AML with t(9;11) is very poor (35).
The clinical outcome of de novo AML patients age ≥60 y with

t(9;11) was also very poor. In fact, their survival was comparable
to that of older patients classified in the 2017 ELN adverse-risk
group, both those who harbored 11q23/KMT2A rearrangements
other than t(9;11) and those with other adverse-risk cytogenetic
and molecular abnormalities. However, the relatively small num-
ber of older patients with t(9;11) that we studied (n = 16) makes
confirmation of our results necessary.
Our comparison of outcomes of younger patients with 11q23/

KMT2A rearrangements other than t(9;11) with those of non–11
q23/KMT2A-rearranged patients classified in the 2017 ELN
adverse-risk group revealed that the higher CR rates of patients
with t(v;11)(v;q23) did not translate into a benefit in DFS or OS.
This indicates the need for allogeneic stem cell transplantation
(allo-SCT) and/or novel therapeutic approaches for these patients.
In summary, our analysis of the mutational landscape of pa-

tients with 11q23/KMT2A rearrangements revealed a relatively
low number of mutations, the most common of which involve the
RAS pathway. With regard to outcome, patients with t(v;11)(v;q23)
had short survival regardless of age, but there was an age difference
for patients with t(9;11). The younger patients had relatively fa-
vorable outcomes, whereas the older patients with t(9;11) had very
poor outcomes.

Methods
Patients and Treatment. We investigated 172 adult patients diagnosed with
de novo AML and a balanced 11q23/KMT2A rearrangement for whom clinical
pretreatment data were available. For outcome analyses, patients who un-
derwent allo-SCT in first CR were excluded. This was done because most
CALGB treatment protocols did not allow performing allo-SCT in first CR on
the study, and patients undergoing allo-SCT had to be taken off the pro-
tocol, resulting in either absent or incomplete follow-up data. Hence, we
analyzed the outcomes of 141 adult patients with a balanced 11q23/KMT2A
rearrangement. We also analyzed outcomes of 1,097 adults with de novo
AML who had no 11q23/KMT2A rearrangement and were classified by the
2017 ELN risk groups as a comparison cohort. Because of differences in the
treatment protocols, outcomes of younger adult patients (age <60 y) were
analyzed separately from those of older patients (age ≥60 y). Almost all
patients (98.9%) received similar cytarabine/daunorubicin-based induction
chemotherapy on the CALGB/Alliance trials, and most younger patients were
enrolled onto protocols with consolidation consisting of high-dose chemo-
therapy and autologous SCT (36–45); 1.1% of the patients were treated with
decitabine with or without bortezomib (46). Details of the treatment pro-
tocols are provided in SI Appendix. In addition, 96 of the 172 adult patients
with AML diagnosed with a balanced 11q23/KMT2A had material available
for molecular studies and were analyzed using targeted amplicon sequencing
(24). All patients provided written informed consent, and study protocols were
approved by the Institutional Review Board at each participating center (listed
in SI Appendix) in accordance with the Declaration of Helsinki.

Cytogenetic and Molecular Analyses. All patients were enrolled on companion
protocols CALGB 8461 (cytogenetic studies), CALGB 9665 (leukemia tissue
bank), and CALGB 20202 (molecular studies). Cytogenetic analyses of pre-
treatment BM and/or blood samples were performed by institutional labo-
ratories approved by the CALGB/Alliance using unstimulated short-term (24-
or 48-h) cultures. Cytogenetic results were confirmed by central karyotype
review (47).

Viable cryopreserved BM or blood cells were stored for future analyses
before starting treatment. Mononuclear cells from BM or blood were
enriched by Ficoll-Hypaque gradient and cryopreserved in liquid nitrogen
until thawed at 37 °C for analysis. DNA extractions were performed using
the Qiagen DNeasy Blood and Tissue Kit. The mutational status of
80 protein-coding genes was determined centrally at The Ohio State Uni-
versity by targeted amplicon sequencing using the Illumina MiSeq platform
as described previously (24). All variants that occurred with VAFs of <0.10 or
were sequenced to a depth of <15 reads were defined as not mutated. In
addition, variants were excluded when they occurred only in one read di-
rection if sequenced in both directions, if the region contained many vari-
ants with low quality scores, or if they occurred in all analyzed samples
including run controls. Samples with high background noise were also ex-
cluded from analysis. Samples were considered nonevaluable for a specific
gene if ≥85% of the amplicons covering the target regions within the coding
sequence of the gene were sequenced to a depth of <15 reads. Testing for
the presence or absence of FLT3-ITD was performed as described previously
(48). In addition to the 80 genes analyzed using the targeted amplicon se-
quencing panel, testing for CEBPA mutations was performed with Sanger
sequencing as described previously (49); thus, mutational status was assessed
in a total of 81 genes. In accordance with the revised WHO classification of
myeloid neoplasms and acute leukemias (17), only patients with biallelic
CEBPA mutations were considered CEBPA-mutated.

Statistical Analyses. Clinical endpoints were defined as described previously
(1) and in SI Appendix. Basic clinical characteristics were compared using
Fisher’s exact test for categorical variables and Wilcoxon’s rank-sum test for
continuous variables (50). Estimated probabilities of DFS and OS were cal-
culated using the Kaplan–Meier method, and differences between survival
distributions were evaluated using the log-rank test (50). All analyses were
performed by the Alliance Statistics and Data Center on a database locked
on January 10, 2019, using SAS 9.4 and TIBCO Spotfire S+ 8.2.

Data Availability. All study data are included in main text and SI Appendix.
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